Unique paper Code	$:$	32371303
Name of the Paper	$:$	Mathematical Analysis
Name of the Course	$:$	B.Sc. (H) Statistics Under CBCS
Semester	$:$	III
Duration	$:$	3 Hours
Maximum Marks	$:$	75

Instructions for Candidates

1. Attempt any four questions.
2. All Questions carries equal marks 18.75 marks each.
3. (a) Define
(i) Neighbourhood of a point,
(ii) Open Set and
(iii) Closed Set.

Give an example of each of above.
Also show that the union of an arbitrary family of Closed sets may
(i) be a Closed Set
(j) fail to be a Closed Set
(b) Define Supremum and infimum of a Set. Find these-supremum and infimum for the following set S where

$$
S=\left\{x \in R: x^{2}-2 x-5<0\right\} .
$$

(c) Examine the following set for its limit point/(s)

$$
S=\left\{\frac{1}{n}, n \in Z^{+}\right\}
$$

$$
(6,4,8.75)
$$

2. (a) Define a Convergent Sequence. Use the definition to show that $\lim _{n \rightarrow \infty} \frac{3+2 \sqrt{n}}{\sqrt{n}}=2$.
(b) Define Convergence and Absolute Convergence of a Series. Is every convergent series absolute convergent? Justify your answer. Test for convergence of the series

$$
\begin{equation*}
1-\frac{1}{2!}+\frac{1}{4!}-\frac{1}{6!}-\ldots \tag{7,11.75}
\end{equation*}
$$

3. (a) Test for the convergence of the series
i) $\sum_{n=1}^{\infty}(1 / n)^{1 / n}$
ii) $\frac{\alpha}{\beta}+\frac{1+\alpha}{1+\beta}+\frac{(1+\alpha)(2+\alpha)}{(1+\beta)(2+\beta)}+\ldots$..
(b) Obtain Maclaurin's series expansion of $f(x)=(1+x)^{m} \quad \forall x \in R$, where m is a positive integer.
4. (a) State and prove Rolle's Theorem. Give its Geometrieal_geometrical Interpretationinterpretation. Further prove that if \mathbf{p} is a polynomial and \mathbf{p}^{\prime} the derivative of \mathbf{p}, then between any two consecutive zeroes of \mathbf{p}^{\prime}, there lies at most one zero of \mathbf{p}.
(b) Let f be the function defined on R by setting

$$
f(x)= \begin{cases}|x-1|+|x+2|, & x \neq 0 \\ 0 & x=0\end{cases}
$$

Examine the function f for continuity and derivability at $\mathrm{x}=1$ and $\mathrm{x}=-2$.
$(10.75,8)$
5. (a) Derive a formula which can be used for interpolating a value of $f(x)$ near the end of the tabulated values.
(b) Identify the following expression and derive the sameit by defining the appropriate conditions-

$$
f(x)=f\left(x_{0}\right)+\left(x-x_{0}\right) f\left(x_{0}, x_{1}\right)+\cdots+\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots\left(x-x_{n}\right) f\left(x_{0}, x_{1}, \ldots \ldots, x_{n}\right)
$$

(c) Use method of separation of symbols to prove the identities

$$
\begin{aligned}
& u_{0}+\binom{n}{1} u_{1} x+\binom{n}{2} u_{2} x^{2}+\cdots+\binom{n}{n} u_{n} x^{n}=(1+x)^{n} u_{0}+\binom{n}{1}(1+x)^{n-1} x \Delta u_{0}+ \\
& \binom{n}{2}(1+x)^{n-2} x^{2} \Delta^{2} u_{0}+\cdots \ldots \ldots+x^{n} \Delta^{n} u_{0}
\end{aligned}
$$

6 (a) Defined the operators E, Δ, μ, δ and ∇ and show that

$$
\mu=\frac{1}{2}\left(E^{\frac{1}{2}}+E^{-\frac{1}{2}}\right)=\frac{2+\Delta}{2 \sqrt{1+\Delta}}=\sqrt{1+\frac{1}{4} \delta^{2}}
$$

(b) Calculate approximations to the value of $\int_{0}^{6} \frac{d x}{1+x^{2}}$ by using simpson's-Simpson's onethird rule.

